The structure was solved by direct methods and refined on F using the SHELXTL-Plus (MicroVAX II) program package (Sheldrick, 1987). H atoms were placed in idealized positions, and constrained to have C-H = 0.96 Å and isotropic displacement parameters U = 0.08 Å². All non-H atoms were treated as anisotropic.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: CR1151). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

King, J. A. Jr & Bryant, G. L. Jr (1990). Acta Cryst. C46, 1330–1334. King, J. A. Jr & Bryant, G. L. Jr (1993). Acta Cryst. C49, 550–551. King, J. A. Jr & Codella, P. J. (1990). Macromolecules, 23, 345–348. Sheldrick, G. M. (1987). SHELXTL-Plus. Release 3.4 for Nicolet

R3m/V crystallographic system. Nicolet Instrument Corporation, Madison, Wisconsin, USA.

Acta Cryst. (1995). C51, 1143–1144

S-Benzylisothiouronium Hydrogen 2-Oxopentanedioate, C₈H₁₁N₂S⁺.C₅H₅O₅⁻⁻

SEIK WENG NG

Institute of Advanced Studies, University of Malaya, 59100 Kuala Lumpur, Malaysia

(Received 22 July 1994; accepted 1 November 1994)

Abstract

The 5-carboxylic acid end of the 2-oxopentanedioate group of S-benzylisothiouronium hydrogen 2-oxopentanedioate is linked by a hydrogen bond $[O \cdots O = 2.653 (9) \text{ Å}]$ across a centre of inversion to give rise to a dianionic species. At the free carboxyl end, the two carboxyl O atoms form hydrogen bonds to the amino groups belonging to four adjacent cations $[O \cdots N = 2.757 (9), 2.889 (9), 2.785 (8), 2.844 (7) \text{ Å}].$

Comment

The compound, (I), was synthesized for use in a condensation reaction with triphenyltin hydroxide to yield the $[(C_6H_5)_3SnO_2CCH_2CH_2COCO_2]^-$ anion, following the structural characterization of the $[(C_6H_5)_3SnO_2CCH_2-CH_2CO_2]^-$ (Ng, Kumar Das, Xiao, van der Helm, Holecek & Lycka, 1991) and $[(C_6H_5)_3SnO_2CCO_2]^-$ (Ng & Kumar Das, 1993) stannate ions.

Fig. 1. ORTEPII (Johnson, 1976) plot of the title compound showing the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Experimental

The compound was synthesized from monosodium 2oxoglutarate and S-benzylisothiouronium hydrochloride in water (Furniss, Hannaford, Smith & Tatchell, 1989), and transparent crystals were grown from an ethanol solution of the compound.

Crystal data

$C_8H_{11}N_2S^+.C_5H_5O_5^-$	Mo $K\alpha$ radiation
$M_r = 312.35$	$\lambda = 0.71073 \text{ Å}$
Monoclinic	Cell parameters from 25
$P2_1/n$	reflections
a = 16.380(3) Å	$\theta = 6 - 10^{\circ}$
b = 5.5227 (5) Å	$\mu = 0.229 \text{ mm}^{-1}$
c = 17.355(3) Å	T = 300 K
$\beta = 108.78 (8)^{\circ}$	Platelet
$7 = 1486.3 (4) Å^3$	$0.25 \times 0.25 \times 0.07 \text{ mm}$
2 = 4	Colourless
$D_x = 1.396 \text{ Mg m}^{-3}$	

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North, Phillips & Mathews, 1968) $T_{min} = 0.9173, T_{max} =$ 0.9999 3035 measured reflections 2723 independent reflections

Refinement

Refinement on F R = 0.060 wR = 0.069 S = 0.4651186 reflections 190 parameters H-atom parameters not refined $w = 1/[\sigma^2(F) + 0.0004|F|^2 + 1]$ 1186 observed reflections $[I > 3\sigma(I)]$ $R_{int} = 0.025$ $\theta_{max} = 25^{\circ}$ $h = 0 \rightarrow 19$ $k = 0 \rightarrow 6$ $l = -20 \rightarrow 19$ 3 standard reflections frequency: 60 min intensity decay: none

 $(\Delta/\sigma)_{\text{max}} = 0.01$ $\Delta\rho_{\text{max}} = 0.28$ (4) e Å⁻³ $\Delta\rho_{\text{min}} = -0.19$ (4) e Å⁻³ Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Acta Crystallographica Section C ISSN 0108-2701 ©1995

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$B_{\rm eq} = (4/3) \sum_i \sum_j \beta_{ij} \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	Z	Beq	
S	0.9290(1)	0.0650 (5)	0.2657 (1)	4.80 (5)	
01	0.7810(3)	0.774 (1)	0.3682 (3)	4.6 (1)	
02	0.8924 (3)	0.734 (1)	0.4802 (3)	5.0 (1)	
03	0.7767 (3)	0.933 (1)	0.5532 (3)	4.6 (1)	
04	0.5765 (3)	0.978(1)	0.4563 (3)	5.0 (1)	
05	0.5577 (3)	1.277 (1)	0.5353 (3)	4.5 (1)	
N1	0.8316 (3)	0.416(1)	0.2826 (3)	3.8 (1)	
N2	0.9475 (3)	0.349(1)	0.3957 (3)	3.5 (1)	
C1	0.9021 (4)	0.294 (1)	0.3208 (4)	3.0 (2)	
C2	1.0326 (4)	-0.038 (2)	0.3327 (4)	3.8 (2)	
C3	1.0759 (4)	-0.199 (1)	0.2861 (4)	3.1 (2)	
C4	1.1180 (5)	-0.404 (1)	0.3234 (4)	3.5 (2)	
C5	1.1623 (4)	-0.547 (2)	0.2858 (4)	4.1 (2)	
C6	1.1645 (5)	-0.479 (2)	0.2090 (4)	4.2 (2)	
C7	1.1229 (5)	-0.278 (2)	0.1718 (5)	4.1 (2)	
C8	1.0775 (4)	-0.135 (1)	0.2093 (4)	3.6 (2)	
C9	0.8207 (4)	0.817(1)	0.4411 (4)	3.2 (2)	
C10	0.7742 (4)	0.980(1)	0.4850 (4)	3.1 (2)	
C11	0.7236 (5)	1.187 (2)	0.4381 (5)	4.5 (2)	
C12	0.6712 (5)	1.319 (2)	0.4812 (5)	4.9 (2)	
C13	0.5970 (5)	1.174 (2)	0.4903 (5)	4.3 (2)	

Table 2. Geometric parameters (Å, °)

		-	
S-C1	1.727 (8)	C3C4	1.38 (1)
S-C2	1.812(7)	C3	1.39(1)
01	1.243 (8)	C4—C5	1.37 (1)
O2—C9	1.239 (8)	C5—C6	1.39(1)
O3-C10	1.198 (8)	C6C7	1.36(1)
O4-C13	1.23(1)	C7—C8	1.38(1)
O5C13	1.29(1)	C9-C10	1.53 (1)
N1-C1	1.318 (9)	C10C11	1.49(1)
N2	1.308 (8)	C11-C12	1.50(1)
C2—C3	1.52(1)	C12—C13	1.51 (1)
C1—S—C2	103.1 (4)	C3-C8-C7	119.3 (8)
S-C1-N1	115.8 (5)	01-C9-02	125.6 (8)
S-C1-N2	123.7 (6)	O1-C9-C10	115.8 (6)
N1-C1-N2	120.5 (7)	O2-C9-C10	118.6 (6)
S-C2-C3	110.0 (5)	O3-C10-C9	119.9 (7)
C2C3C4	118.7 (7)	O3-C10-C11	122.8 (8)
C2C3C8	121.3 (7)	C9-C10-C11	117.2 (7)
C4—C3—C8	119.9 (8)	C10-C11-C12	114.1 (7)
C3-C4-C5	120.8 (8)	C11-C12-C13	113.8 (8)
C4C5C6	118.8 (8)	O4-C13O5	124.5 (9)
C5C6C7	120.6 (9)	O4-C13-C12	121.6 (9)
C6C7C8	120.5 (8)	O5-C13-C12	113.9 (9)

Table 3. Contact distances (Å)

O(1)· · · N(1)	2.757 (9)	$O(2) \cdot \cdot \cdot N(2^{ii})$	2.844 (7)
$O(1) \cdots N(1)$	2.785 (8)	$O(4) \cdot \cdot \cdot O(5^{m})$	2.653 (9)
O(2)· · ·N(2)	2.889 (9)		

Symmetry codes: (i) $\frac{3}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$; (ii) 2 - x, 1 - y, 1 - z; (iii) 1 - x, 2 - y, 1 - z.

Non-H atoms were refined anisotropically; H atoms were generated geometrically and allowed to ride on their parent C or N atoms (C—H = 0.95 Å, $B = 5 \text{ Å}^2$).

Data collection: CAD-4 diffractometer software (Enraf-Nonius, 1988). Cell refinement: CAD-4 diffractometer software. Data reduction: *MolEN* (Fair, 1990). Program(s) used to solve structure: *MULTAN*80 (Main *et al.*, 1980). Program(s) used to refine structure: *MolEN*. Molecular graphics: *ORTEPII* (Johnson, 1976). Software used to prepare material for publication: *MolEN*.

I thank the University of Malaya (PJP 152/91) for supporting this work.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: TA1018). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Enraf-Nonius (1988). CAD-4 VAX/PC Fortran System. Operator's Guide to the Enraf-Nonius CAD-4 Diffractometer Hardware, its Software and the Operating System. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Furniss, B. S., Hannaford, A. J., Smith, P. W. G. & Tatchell, A. R. (1989). Vogel's Textbook of Practical Organic Chemistry, 5th ed., p. 1264. Harlow: English Language Book Society/Longman.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Ng, S. W. & Kumar Das, V. G. (1993). 2nd International Conference on Materials Science and Environmental Chemistry of Main Group Elements, 8–11 November 1993, Kuala Lumpur, Malaysia.
- Ng, S. W., Kumar Das, V. G., Xiao, G., van der Helm, D., Holecek, J. & Lycka, A. (1991). *Heteroatom. Chem.* 2, 495–498.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-358.

Acta Cryst. (1995). C51, 1144-1146

The Phenylhydrazone Form of 2-(4-Chlorophenylazo)-1,3-indandione

ENGIN KENDI, SÜHEYLA ÖZBEY AND SEMRA IDE

Department of Physics Engineering, Hacettepe University, 06532 Beytepe, Ankara, Turkey

HOONG-KUN FUN AND BOON-CHUAN YIP

School of Physics, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia

(Received 15 August 1994; accepted 25 October 1994)

Abstract

In the title compound, 2-(4-chlorophenylhydrazono)-1,3-indandione ($C_{15}H_9ClN_2O_2$), the indandione and phenylazo groups are connected by a C==N bond of 1.307 (3) Å. The molecule is planar and the bond lengths correspond to those expected for a phenylhydrazone. A strong intramolecular N-H···O hydrogen bond was found.